5 research outputs found

    DIY Human Action Data Set Generation

    Full text link
    The recent successes in applying deep learning techniques to solve standard computer vision problems has aspired researchers to propose new computer vision problems in different domains. As previously established in the field, training data itself plays a significant role in the machine learning process, especially deep learning approaches which are data hungry. In order to solve each new problem and get a decent performance, a large amount of data needs to be captured which may in many cases pose logistical difficulties. Therefore, the ability to generate de novo data or expand an existing data set, however small, in order to satisfy data requirement of current networks may be invaluable. Herein, we introduce a novel way to partition an action video clip into action, subject and context. Each part is manipulated separately and reassembled with our proposed video generation technique. Furthermore, our novel human skeleton trajectory generation along with our proposed video generation technique, enables us to generate unlimited action recognition training data. These techniques enables us to generate video action clips from an small set without costly and time-consuming data acquisition. Lastly, we prove through extensive set of experiments on two small human action recognition data sets, that this new data generation technique can improve the performance of current action recognition neural nets

    Discovering Human Interactions in Videos with Limited Data Labeling

    Get PDF
    We present a novel approach for discovering human interactions in videos. Activity understanding techniques usually require a large number of labeled examples, which are not available in many practical cases. Here, we focus on recovering semantically meaningful clusters of human-human and human-object interaction in an unsupervised fashion. A new iterative solution is introduced based on Maximum Margin Clustering (MMC), which also accepts user feedback to refine clusters. This is achieved by formulating the whole process as a unified constrained latent max-margin clustering problem. Extensive experiments have been carried out over three challenging datasets, Collective Activity, VIRAT, and UT-interaction. Empirical results demonstrate that the proposed algorithm can efficiently discover perfect semantic clusters of human interactions with only a small amount of labeling effort
    corecore